APPLICATION OF THE METHOD OF MATCHED ASYMPTOTIC
EXPANSIONS TO THE CALCULATION OF THE STATIONARY
THERMAL PROPAGATION OF THE FRONT OF AN EXOTHERMIC
REACTION IN A CONDENSED MEDIUM

V. S, Berman and Yu. S, Ryazantsev UDC 534.2

In this paper we use the method of matched asymptotic expansions to establish a two-term
formula for the speed of propagation of the front of an exothermic reaction in a condensed
medium whose thermophysical characteristics depend on the concentration of the reacting
matter and the temperature. As the parameter of the expansion we use the ratio of the ac-
tivation temperature to the adiabatic combustion temperature, The results are applied to
the case of the combustion of nonvolatile condensed systems. We compare the approximate
formula obtained with the results of a numerical integration, "

1. Formulation of the Problem. Method of Solution, The problem concerning the statiohary thermal
propagation of the front of a one~stage exothermic reaction in a condensed phase may be formulated as fol-
lows (see, for example, [1, 3, 4]):
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Here x is the spatial coordinate, T the temperature, y the concentration of the reaction product, h=
const is the thermal reaction effect, m is the mass velocity of propagation of the reaction front, which is a
characteristic value of the problem, ¢ =const is the heat capacity, p =p(T, y) is the density of the medium,
0<n<2 is the order of the reaction, A=A(T, y) is the coefficient of thermal conductivity of the medium, ®(T)
gives the dependence of the chemical reaction speed on the temperature, and T_ is the initial temperature,

The problem (1.1)~(1.4) has the first integral
A dar m[T—T_———Z—(i——-y)]———O, T,=T 4+ (1.5)

¢ dx

The minus and plus subscripts refer to quantities at the cold and hot boundaries of the combustion
zone, respectively.

Equation (1.5) will now be used instead of the equation (1.1).

We assume that the speed of the chemical reaction depends on the temperature according to the Ar-
rhenius law

@ (7) = B exp (—E / RT) (1.6)

Here E is the activation energy, R the gas constant, and B is the factor multiplying the exponential
term.
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1t should be noted that for the existence of a solution of the problem (1.1)-(1.4) it is necessary to as-
sume, just as in the theory of thermal flame propagation in a gas [2], that the function &(T) is not equal to
zero and is defined by the formula (1.6) everywhere except for a small interval of temperatures near T=T
[3-5]. In the present paper we use an approximate form of the basic equations in which the need for an ex-
plicit use of this assumption does not arise.

In the problem (1.2)-(1.4) and (1.5) it is appropriate to introduce the new variable and unknown functions

(T —T)) A dt 1.7
=—— O<t<Y, P=ogp .9

From Eq. (1.5) we obtain

P=m({—y) (1.8)
Taking Eq. (1.8) into account, instead of the Egs. (1.2)-(1.4) we can write
' ‘ A —B(—

M (x =) % = (1 — gy K (z,y)exp —EEZD (1.9)

A E T _ B

K = Bp"—, B:RT+’ c:m, M =mexp -
v =0, y=20 (1.10)
T =1, y=1 (1.11)

Equation (1.9) contains the parameter 8, the values for which are usually of an order of magnitude
larger than one. This permits us, in solving the problem, to use the method of matched asymptotic expan-
sions [6, 7]. Taking into account the large size of 8, we can decompose the interval of the independent vari-
able 0 =7 =1 into two regions. In the region adjacent to 7 =0 (exterior region) the right side of the equation
is substantially less than the left, In the region adjacent to T =1 (interior region) the large size of 8 in the
exponent compensates for the smallness of the factor (1—7), and both sides of the equation become compa-
rable in size. In the interior region we introduce the variable T, =B (1=7). In place of Egs. (1.9) and (1.11)
we obtain

M2 (y4 5 —1) Bk =K (3,1 — 3 ) (1 — g oxp s (1.12)
Ty =0, y=1 ‘ (1.13)

We seek an approximate solution of the problem in the form of expansions in powers of the small pa~
rameter 8~!. In the interior region

Yy () = Fo B) yo (va) + Fu (B) 41 (va) (1.14)
In the exterior region
y @ =fo ) y® () + £ () yV(v) (1.15)
The expansion for the characteristic value of the problem M is the same in both regions:
M=o, B) M, + o, (B)M, (1.16)

The coefficients in the expansions (1.14)-(1.16), which depénd on 8, must satisfy for g— « the con-
ditions

Fy 1 o
xR T e
The functions y("), y(l) and y,, y4 are determined successively from Eqgs. (1.9), (1.10) and Egs. (1.12),

(1.13), respectively. The terms of the series (1.16) for the characteristic value M, which remain to be de~
termined, are then obtained from the condition of matching of the interior expansion (1.14) and the exterior
expansion (1.15); this condition is expressed by requiring that corresponding terms of the expansions for
y(r,) and y(r) coincide when 7, — = and 7— 1, respectively. The form of the coefficients Fy,1 and fo,pao,1
is established from the boundary conditions and the matching condition.

2. Two Approximations for m. We substitute the expansions (1.15) and (1.16) into Eq. (1.9). Since
the following relations are satisfied when g — = :

exp (—B)/fo B) >0, exp (—P)/ oy (B) =0
it follows from Eqgs. (1.9) and (1.10) that in the exterior region

yO (1) =0, y¥ (x) =0 @.1)
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From Eqs. (2,1) it is evident that the condition of matching of interior andexterior expansions amounts,
in our case, to the requirement that
Yo (te) >0, 31 (v)) >0 for Ty = 00 2.2)

From the boundary condition (1.11), which the expansion (1.14) must satisfy, it follows that

Fo@®) =1, 30 =1 5 0)=0 (2.3)

We substitute the expansions (1.14) and (1.16) into Eq. (1.12). From an order of magnitude analysis
of the individual terms we obtain, taking the conditions (2.2) and (2.3) into account,

al () = B~

Grouping the terms of minimum order in ﬁ"i, we obtain the equation for

d —_—
Mq —d? = — K (yo,1) (1 — yo)~Lexp 1_:’; 2.4)
From Eq. (2.4) and the boundary condition (2.3) we find that
' 1
g
Mg S (1K (zz’)i) dz=(1+0) [1 — exp (— ———1T_:G)] (2.5)

Yo(Ta)
The relation (2.5) determines the zeroth approximation for the function y(‘r*) in the interior region.

From Eq. (2.5) and the matching condition (2.2) we obtain a formula for calculating the zeroth approx-
imation of the characteristic value of the problem:

1 -1
. C(d— ) " ds
Mo =1 +20) [§—7<Tr] (2.6)

We find the following approximation. Substituting the Egs. (1.14) and (1.16) into Eq. (1.12), we find,
by matching orders of magnitudes of the individual terms, taking Egs,. (2.2), (2.3), and (2.4) into account,
that F;=B~%, @ ;=B~%2, Then for the function y,(r,) we obtain the equation

=gt — e (- ) { [ - (5o
+3E () e ) (2.7)
Here the function y, () and the quantity M, are determined by Eqs. (2.5) and (2.6); the arguments of
the functions marked with a degree superscript are equal to .
Y=o (i), T=1
The solution of Eq, (2.7), satisfying the boundary condition (2.3), may be written in the form

i = G e\ (B e (S — g e [ 55 - o] o
; |

F(I)E”‘ix’(amx)ody : v 2.8)

dy
[}

Using the matching condition (2.2), we obtain from Eq. (2.8) an expression for the first term of the
expansion of the characteristic value:

2My ¢ ° z? dln K \° z —z , ¢ o —z

Mo ——§K [ e (55) — i) o [ — F@)] do [ (Komp [
)

Thus the two-term expansion in 8~! of the mass velocity of propagation of an exothermic reaction

front in a condensed phase has the form

m = MoeBB-h (1 + B ]Aul% \)

—F (x)] dx] ? (2.9)

(2.10)

where the quantities M, and M, are given by Eqgs, (2.6) and (2.9).
3. Particular Cases. We now apply the results obtained to describing the combustion of nonvolatile
condensed systems with strong dispersion, wherein the formation of gaseous products and change in vol-
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ume and thermal conductivity of the condensed medium may, in the course of the chemical reaction, be de-
scribed within the scope of the model presented in [8, 9]. In accord with [8, 9] we assume that the density

and the thermal conductivity of the condensed medium vary with a change in the mass fraction of the reac-
tion products and the temperature according to the laws

= [ty —0)]7 = [ty (2B )]t (20 )] @1

Here A4 and A, are, respectively, the coefficients of thermal conductivity o1 the conuensed phase and
of the gaseous reaction products; p, is the initial density of the condensed phase; R is the gas constant; u is
the molecular weight of the gaseous reaction products; p is the pressure; and z is the fraction of gas in the
reaction products.

We assume that in the condensed system a chemical reaction of the first order (n=1) takes place.
‘The expression for the function K°= K (y;, 1) assumes the form

o _ Bhapo (1 --byo) _, (pRT, — , (D poRT,
B == (14 ayop?” a_z< wp 1)’ b_z<7u pp 1) (3.2
Substituting the expressions (3.2) into the relations (2.5) and (2.6), we find, after integrating, forn=1
I(y) —T __ Bhpe(l+0)
1— Ty = °XP 7 s, M= et 0 (3.3)
1+b 2 (1 -+ byo) (byo — 3) @ (b ®B—-23
1) = L5 In T 25 (=) — o) (e o )

The relations (3.3) determine the function y,(r, ) and the zeroth approximation M, for the character-
istic value of the problem,

The expression for m may be written in the form

b — g)2 = —FE
m? — B;;LOM R£+2 |-( baa) ln(1+b)+%<2—%+—g—>} 1exp_ﬁ_T (3.4)

Equation (3.4), which determines the stationary combustion front propagation velocity, coincides with
the formula given in [8, 9], obtained by the Zel'dovich— Frank-Kamenetskii method.

For the second term of the expansion of the characteristic value of the problem we obtain from Eq.,
(2.9) for the case considered
1
My 1 ¢ M [/0lnK\° 1 1 (o) 7
m——i""TS x° [( ot ) "‘1—y0] [1' I(O)de (3.5)
[}
dInK\°__ =y b4z 2(a+z)]
( ot ) = 1+c[1+byo T T aw

If the thermal conductivity coefficients of the condensed and gaseous phases are equal to each other,
the Eq. (3.5) simplifies,

If in Eq. (3.5) we put A;=X,, i.e., b=a, we find, after integrating,

M1__ a-tz . a+2 1+sf th_ a
=t (e ) g [ F 95— 204 2in

=

Jo=({3 T=-4 (3.6)

9

2—[—(1.—|—a)J<2

In the particular case involving propagation of an exothermic reaction front in a medium with con~
stant thermophysical characteristics, we find from Egs. (3.3) and (3.6), putting z=0 (b =a =0), that

Bhapo (1 /e M 2
MOZ[ 1P0(c+5)1 , 7::(1—%6)3;—2——1 (3.7)
Here the first equation determines the zeroth approximation for the stationary reaction front propaga-

tion velocity; it agrees with that found in [1, 4]. The second equation determines the first correction to the
zeroth approximation,

Let us compare the results obtained in calculating the speed of combustion of a condensed system
using the two-term formula defined by Egs. (2.10), (3.3), and (3.6) with the exact solution of the problem
concerning the stationary propagation speed of the combustion front [8, 9]. The calculations in [8, 9] were
made for b=a (z=1) and for large numerical values of the parameter a; therefore, in place of the Eqgs. (3.3)
and (3.6), it is appropriate to use the limiting expressions for M, and M;/M,, valid for large a,
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TABLE 1 From Eq. (3.3), putting b =a, we obtain for a>1

a B o Ap Ay M()z = 2B}\qp° (1 + a)/ca (3.8)
From Eg. (3.6) for a>1, we find
734 19,37 0.337 g.égg (1).26 2
735 19.37 0,337 . A M, M, = — 1 2
72,5 | 19.37 0.337 4493 | —1.3 1/ My tl+o)aa—2 (3.9
12%; ég:g ?;?,{;Z 11:23 §:24 The two-term approximation for the stationary
325 43.85 0.776 1.14 —2.87 i i i miti i ;
b4 g o 1ia 5 c?mbustlon speed in the limiting case considered is
1246 11.46 0.13 11 3.4 given by the Egs. (2.10), (3.8), and (3.9).
1.47.108 9.688 0.337 12 0.4
5.5-10¢ 25,76 2.02 19 8 The results are shown for comparison in Table 1.
29 19.42 0.837 7 1.4
106 13.4 0.937 6.5 -9 In this table A, denotes the deviation in per cent

of the mass combustion velocity, obtained from the
zeroth approximation formula, from the value obtained from a numerical solution of the problem; A, de~
notes the deviation in percent of the mass velocity, calculated from the two-term approximate formula, from
the value obtained from the numerical solution. It is evident that the zeroth approximation always gives a
lowered value of the stationary combustion speed. The second term in the two-term formula is always pos~
itive. In the majority of cases, by taking account of the second approximation, we obtain a substantial de-
crease in the deviation of the speed, obtained by the approximate analytical method, from that obtained by
numerical integration.

We remark that various approximate methods of calculating the stationary propagation speed of an
exothermic reaction front in a condensed medium were proposed in a series of papers (for example, [1, 4,
10, 11]).

The method of matched asymptotic expansions, favored in many problems of mechanics, makes it pos-
sible, with the help of a standard procedure, to obtain an approximate analytical solution of the problem
which guarantees good agreement with the exact solution. By analogy with other problems of mechanics,
for example, with the problem of laminar flow around a sphere [6], it may be assumed that the results ob~
tained will be sufficiently close to the exact solution providing the values of the parameter of the expansion
are not too large.
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