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In this paper  we use the method of matched asymptotic expansions to establish a two- t e rm 
formula for  the speed of propagation of the front of an exothermic react ion in a condensed 
medium whose thermophysical  charac te r i s t i cs  depend on the concentrat ion of the reacting 
mat ter  and the temperature .  As the pa rame te r  of the expansion we use the rat io of the ac-  
tivation tempera ture  to the adiabatic combustion tempera ture .  The resul ts  are applied to 
the case of the combustion of nonvolatile condensed sys tems.  We compare the approximate 
formula obtained with the resul ts  of a numerical  integration. 

1. Formulation of the Problem.  Method of Solution. The problem concerning the stat ionary thermal  
propagation of the front of a one-stage exothermic react ion in a condensed phase may be formulated as fol- 
lows (see, for  example, [1, 3, 4]): 

~-~\ -J - -~x / - -  dz -~ T P~(i --  Y)~O(T) = 0  

dy y)n m -~, - -  p~ (1 - -  a9 (T) = 0 

(1.1) 

(1.2) 

(1.3) T :  T ,  y-----0, x ~ - - - c ~  
dT / dx = O, y --- l ,  x =  oo (1.4) 

Here x is the spatial coordinate, T the temperature ,  y the concentrat ion of the react ion product,  h = 
const is the thermal  reaction effect, m is the mass  velocity of propagation of the react ion front, which is a 
charac te r i s t ic  value of the problem; c =const  is the heat capacity, p =p(T, y) is the density of the medium, 
0 <n< 2 is the o rder  of the reaction, X=X(T, y) is the coefficient of thermal  conductivity of the medium, ~(T) 
gives the dependence of the chemical  react ion speed on the temperature ,  and T_ is the initial temperature .  

The problem (1.1)-(1.4) has the f i rs t  integral  

d T - { - m  T - - r _ - -  ( t -y )  ----0, T + = T _ + - ~  dx 

The minus and plus subscripts  re fe r  to quantities at the cold and hot boundaries of the combustion 
zone, respect ively.  

Equation (1,5) will now be used instead of the equation (1.1). 

We assume that the speed of the chemical  react ion depends on the tempera ture  according to the Ar -  
rhenius law 

qb(T)_-- B e x p ( - - E / R T )  (1.6) 

Here E is the activation energy, R the gas constant, and B is the factor  multiplying the exponential 
t e rm.  
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It  shou ld  be  no ted  tha t  f o r  the  e x i s t e n c e  of a s o l u t i o n  of the p r o b l e m  (1.1)-(1.4)  i t  i s  n e c e s s a r y  to a s -  
s u m e ,  j u s t  a s  in  the  t h e o r y  of t h e r m a l  f l a m e  p r o p a g a t i o n  in a g a s  [2], tha t  the  func t ion  @(T) i s  not  equa l  to 
z e r o  and i s  de f ined  by  the  f o r m u l a  (1.6) e v e r y w h e r e  e x c e p t  fo r  a s m a l l  i n t e r v a l  of t e m p e r a t u r e s  n e a r  T = T  
[3-5] .  In the  p r e s e n t  p a p e r  we use  an  a p p r o x i m a t e  f o r m  of the b a s i c  equa t ions  in  which  the  need  fo r  an e x -  
p l i c i t  use  of t h i s  a s s u m p t i o n  does  not  a r i s e .  

In the  p r o b l e m  (1.2)-(1.4)  and (1.5) i t  i s  a p p r o p r i a t e  to i n t r o d u c e  the new v a r i a b l e  a n d u n k n o w n f u n c t i o n s  

c (T-- T_) ~ d~ (1.7) 
z =  h (o~<.r ~ ) ,  P = -7- d-7 

F r o m  Eq.  (1.5) we ob t a in  

p = ,n  ( ,  - y )  ( 1 . 8 )  

Tak ing  Eq.  (1.8) in to  account ,  i n s t e a d  of the  Eqs .  (1.2)-(1.4)  we can  w r i t e  

M 2(1: y ) ~ = ( t - - y ) ~ K ( % y ) e ~ : p  
(t "~) 

"c q- ~ (1.9) 
~, E T_ 

K = Bp ' ~ - 7 ,  [~ = RT+ , ~ = T+--------~ ' M -- m exp 

* = 0, y - -  0 (1.10) 

, = t ,  y = I (1.11) 

Equa t ion  (1.9) c o n t a i n s  the  p a r a m e t e r  fl,  the  v a l u e s  fo r  which  a r e  u s u a l l y  of an o r d e r  of m a g n i t u d e  
l a r g e r  than  one .  Th i s  p e r m i t s  us ,  in  so lv ing  the p r o b l e m ,  to  use  the  m e t h o d  of m a t c h e d  a s y m p t o t i c  e x p a n -  
s i o n s  [6, 7]. Tak ing  into  accoun t  the  l a r g e  s i z e  of fl,  we can  d e c o m p o s e  the  i n t e r v a l  of the  i ndependen t  v a r i -  
ab le  0 __r <_ 1 in to  two r e g i o n s .  In the  r e g i o n  a d j a c e n t  to  r = 0 ( e x t e r i o r  reg ion)  the  r i gh t  s ide  of the  equa t ion  
i s  s u b s t a n t i a l l y  l e s s  than  the  l e f t .  In  the  r e g i o n  a d j a c e n t  to  z = 1 ( i n t e r i o r  r eg ion)  the  l a r g e  s i ze  of fi in the  
exponen t  c o m p e n s a t e s  f o r  the  s m a l l n e s s  of  the  f a c t o r  ( l - r ) ,  and  both  s i d e s  of the  equa t ion  b e c o m e  c o m p a -  
r a b l e  in s i z e .  In the  i n t e r i o r  r e g i o n  we i n t r o d u c e  the  v a r i a b l e  r ,  =fl (1--T) .  In  p l a c e  of Eqs .  (1.9) and (1.11) 
we ob ta in  

M=(yq - ~%--t) ~g~,=I'-sdY (y, i _ _~,_) (t _ y)~ exp G § 1 _ ~_~,.--% (1.12) 

% = 0, g = t (1.13) 

We s e e k  an a p p r o x i m a t e  s o l u t i o n  of the  p r o b l e m  in the  f o r m  of e x p a n s i o n s  in p o w e r s  of the s m a l l  p a -  
r a m e t e r  fi -~. In  the  i n t e r i o r  r e g i o n  

y (%) = F0 ([3) Y0 (%) q- F~ ([3) y~ (%) (1.14) 

In the  e x t e r i o r  r e g i o n  

y (T) = ]0 (]3) y(0) (z) q- /1 ([3) y(1)(z) (1.15) 

The e x p a n s i o n  f o r  the  c h a r a c t e r i s t i c  va lue  of the  p r o b l e m  M i s  the  s a m e  in both r e g i o n s :  

M = cr 0 (~) M 0 q- a l  ([3)M1 (1.16) 

The c o e f f i c i e n t s  in  the  e x p a n s i o n s  (1.14)- (1.16), which  depend  on fl ,  m u s t  s a t i s f y  f o r  fl ~ ~ the  con -  
d i t ions  

F1 (~) -~ O, /1 (~) :> O, ~1 (~) *---)'0 
.Uo (~) ?o (~) ~o (~) 

The func t ions  y(0), y(1) and Y0, Y~ a r e  d e t e r m i n e d  s u c c e s s i v e l y  f r o m  Eqs~ (1.9), (1.10) and Eqs .  (1.12), 
(1.13), r e s p e c t i v e l y .  The t e r m s  of the  s e r i e s  (1.16) fo r  the  c h a r a c t e r i s t i c  va lue  M, which r e m a i n  to be  d e -  
t e r m i n e d ,  a r e  then  o b t a i n e d  f r o m  the  cond i t i on  of m a t c h i n g  of the  i n t e r i o r  e x p a n s i o n  (1o14) and the e x t e r i o r  
e x p a n s i o n  (1.15); t h i s  cond i t i on  i s  e x p r e s s e d  by r e q u i r i n g  tha t  c o r r e s p o n d i n g  t e r m s  of the  e x p a n s i o n s  f o r  
y ( r . )  and  y( r )  c o i n c i d e  when r .  ~ r162 and r ~  1, r e s p e c t i v e l y .  The f o r m  of the  c o e f f i c i e n t s  F0, ! andf0 ,1 ,~0 ,1  
i s  e s t a b l i s h e d  f r o m  the  b o u n d a r y  cond i t i ons  and the m a t c h i n g  cond i t ion .  

2. Two A p p r o x i m a t i o n s  fo r  m.  We s u b s t i t u t e  the  e x p a n s i o n s  (1.15) and (1.16) in to  Eq.  (1.9). Since  
the  fo l lowing  r e l a t i o n s  a r e  s a t i s f i e d  when/9  ~ co : 

exp ( - -  t3) / ]0a (13) -+  0, exp (--~) / a0,1 (~) -+  0 

i t  fo l lows  f r o m  Eqs .  (1.9) and  (1.10) tha t  in  the  e x t e r i o r  r e g i o n  

y(0) (~) ~ 0, y(1) (~) = 0 (2.1) 
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F rom Eqs. (2.1) it is evident that the condition of matching of in te r io r  and ex t e r io r  expansions amounts, 
in our case,  to the requ i rement  that 

Yo (~,) --+ 0, y, (%) --+ 0 for ~, --+ co (2.2) 

From the boundary condition (1.11), which the expansion (1.14) must satisfy, it follows that 

F 0 (~) ---- 1, Yo (0) -- 1, y, (0) = 0 (2.3) 

We substitute the expansions (1.14) and (1.16) into Eq. (1.12). F rom an o rde r  of magnitude analysis  
of the individual t e rms  we obtain, taking the conditions (2.2) and (2.3) into account, 

Grouping the t e r m s  of minimum order  in fl-1, we obtain the equation for  

- -  x ,  ( 2 . 4 )  ~r~dY~ - -K(yo ' t ) ( i - -Y~  t + z  

F r o m  Eq. (2.4) and the boundary condition (2.3) we find that 

1 

M o ~ I  ( t -  z ) l - n  " I i _  e x p ( _  "* ~ a z - - - -  (l + ~) -{-'~-~')] (2.5) 
Vo(~,) 

The relat ion (2.5) de termines  the ze ro th  approximation for the function y ff , )  in the in te r ior  region. 

F rom Eq. (2.5) and the matching condition (2.2) we obtain a formula  for  calculating the zeroth  approx-  
imation of the charac te r i s t i c  value of the problem: 

1 -1  

] (2.6) 
K(z, t) a 

0 

We find the following approximation.  Substituting the Eqs.  (1.14) and (1.16) into Eq. (1.12), we find, 
by matching o rders  of magnitudes of the individual t e rms ,  taking Eqs. {2.2), (2.3), and (2.4) into account, 
that Fl=fl -~, o~l=f1-312. Then for  the function Ylff.)  we obtain the equation 

dyl K~ (4 ~* [ i -----~0 -- /a In K\0"I 
. k T )  JYl -t- 

2Mi [a In/< \o x,2 _____y0} (2.7) 

Here the function Y0 i f , )  and the quantity M 0 are  determined by Eqs. (2.5) and (2.6); the arguments  of 
the functions marked  with a degree supersc r ip t  a re  equal to 

Y=Y0(~,) ,  ~ = t  

The solution of Eq. (2.7), satisfying the boundary condition (2.3), may be wri t ten in the fo rm 
-r 

yi(T, ) (t--y0) n-1 eF(.r KO V2Mi 4 x 2 , /O lnK\  ~ x - - x  

O 

"uo(*) [ O In K \o d (2.8)' 
F ( x ) ~  f ~ )  Y 

0 

Using the matching condition (2.2), we obtain f rom Eq. (2.8) an express ion  for  the f i r s t  te r ra  of the 
expansion of the charac te r i s t i c  value: 

2Mi V x~ L ~ + x (  OlnK~" x --z  --x \ 0"~ ] t - - - - -~ j01exp [~ - -F (x ) ]  I ~ - - F ( x )  1 (2.9) 
0 o 

Thus the two- t e rm expansion in fl-1 of the mass  velocity of propagation of an exothermic  react ion 
front  in a condensed phase has the fo rm 

( Mi) (2.10) m = Moe-~12~ -V, I + ~ - i  

where the quantities M 0 and M 1 are  given by Eqs.  (2.6) and (2.9). 

3. Pa r t i cu la r  Cases .  We now apply the resul ts  obtained to describing the combustion of nonvolatile 
condensed sys tems  with strong dispersion,  wherein the format ion of gaseous products  and change in vol- 
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ume and thermal  conductivity of the condensed medium may, in the course  of the chemical  reaction, be de- 
scr ibed within the scope of the model presented in [8, 9]. In accord  with [8, 9] we assume that the density 
and the thermal  conductivity of the condensed medium vary with a change in the mass  fract ion of the reac-  
tion products and the tempera ture  according to the laws 

po ~ - -  

Here ~1 and ~2 are,  respectively,  the coefficients of thermal  conductivity oi me co~,uv~l~ud phase and 
of the gaseous react ion products;  P0 is the initial density of the condensed phase; R is the gas constant; # is 
the molecular  weight of the gaseous react ion products;  p is the p ressure ;  and z is the fract ion of gas in the 
react ion products.  

We assume that in the condensed sys tem a chemical  react ion of the f i rs t  o rde r  (n = 1) takes place. 
'The express ion for  the function K ~ K (Y0, 1) assumes  the form 

K o B~lpo(i-}-byo) (poRT+ ) ( ;L,  p0BT+ 1 )  ( 3 . 2 )  
= c (1 4- ayo) 2 ' a ==. z \ P~P - -  1 , b z ~1 p~p 

Substituting the express ions  (3.2) into the relations (2.5) and (2.6), we find, after  integrating, f o r n =  1 

- -  1/, B~,lp0 (t + ~) I. I(y0) _ e x p  M02 (3.3) 
I(0) i + ~  ' - -  cI (O) 

a ~ ( i + b y 0 ) ( b y 0 - - 3 )  a 2 (i 4- b) ( b - -  3) 14- b 2 + (1 - yo) I (Yo) ----- In ~ ~-  b s 2 ' b 3 2 

The relat ions (3.3) determine the function Y0ff.) and the zeroth approximation M 0 for the cha rac t e r -  
istic value of the problem. 

The express ion for  m may be wri t ten in the fo rm 

~  ~ ~ m~ Bp0~.~ Rr+2 " In (t + b) + %- 2--  + exp (3.4) 
h E % -  ~ RT+ 

Equation (3.4), which determines  the s tat ionary combustion front propagation velocity, coincides with 
the formula  given in [8, 9], obtained by the Z e P d o v i c h - F r a n k - K a m e n e t s k i i  method. 

For  the second t e r m  of the expansion of the charac te r i s t i c  value of the problem we obtain f rom Eq. 
(2.9) for the case considered 

1 
M1 1 ~Mo ~ r(olnK~O i~Yo l l n [ l -  I(y~176 J L 

--~'~-o = - - 1  +.--y-j---k--~ L \  a, / -7~- j  (3.5) 
o 

[ 1 
- ~  ] ~- i 4- z 1 +  byo tt -+- aye ] 

If the thermal  conductivity coefficients of the condensed and gaseous phases are  equal to each other, 
the Eq. (3.5) s implif ies.  

If in Eq. (3.5) we put Xl=),2, i.e., b = a ,  we find, after  integrating, 

M1 - - t +  a 4 - z  1 i , 2 In  + 7 - ~ - ~  ( t + a ) - ~ - - 2 a + 2 1 n ~ + ( l + a )  
M-"~'= ~ 2 a r a "  

:(~) = i 1%t ~: , : ( 1 ) =  ~ 
- -  6 ( 3 . 6 )  

0 

In the par t icu lar  case involving propagation of an exothermic react ion front in a medium with con- 
stant thermophysica l  charac te r i s t i cs ,  we find f rom Eqs. (3.3) and (3.6), putting z = 0  ( b = a  =0), that 

Mo = B~p0(l+z) ~/', - - =  + z )  - - i  (3.7) 
c M0 -~  

Here the f i rs t  equation determines  the zeroth approximation for the s tat ionary react ion front propaga-  
tion velocity; it agrees  with that found in [1, 4]. The second equation determines the f i rs t  cor rec t ion  to the 
zeroth approximation.  

Let us compare  the resul ts  obtained in calculating the speed of combustion of a condensed sys tem 
using the two- te rm formula  defined by Eqs. (2.10), (3.3), and (3.6) with the exact solution of the problem 
concerning the s ta t ionary propagation speed of the combustion front [8, 9]. The calculations in [8, 9] were 
made for b =a (z = 1) and for  large numerical  values of the pa rame te r  a; therefore,  in place of the Eqs. (3.3) 
and (3.6), it is appropriate  to use the limiting express ions  for  M 0 and MJM0, valid for  large a. 
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TABLE 1 

a 13 ~ Ao A~ 

734 
735 
72.5 

1387 
468 
325 

6.4 
t246 

1.47,L0 s 
5.5.108 

29 
i06 

t9.37 
t9.37 
19.37 
10.3 
30.3 
43.85 
19.37 
tl.46 
9.688 

25.76 
19.42 
13.4 

0.337 
0.337 
0.337 
0.258 
t.564 
0.776 
0.337 
0.i3 
0.337 
2.02 
0.837 
0.937 

6.167 
6.983 
4.493 

11.53 
1t .6 
1.t4 
1.t8 

t2 
19 
7 
6.5 

0.26 
t.t 

--t.3 
1.9 
3.44 

-2.87 
--2.8 

3.4 
0.4 
8 
1.i 

- 9  

F rom Eq. (3.3), putting b =a, we obtain for  a >>1 

M0 ~ = 2Bk190 (1 + ~)/ca (3.8) 

F rom Eq. (3.6) for a >>1, we find 

M1 / M0 = --  t/2 ~- (i -~ a) (t/3 ~ -- 2) (3.9) 

The two- te rm approximation for the stationary 
combustion speed in the limiting case considered is 
given by the Eqs.  (2.10), (3,8), and (3.9). 

The results  are  shown for compar ison in Table 1. 

In this table A 0 denotes the deviation in per  cent 
of the mass  combustion velocity, obtained f rom the 

zeroth approximation formula, f rom the value obtained f rom a numerical  solution of the problem; A 1 de- 
notes the deviation in percent  of the mass  velocity, calculated f rom the two- t e rm approximate formula,  f rom 
the value obtained f rom the numerical  solution. It is evident that the zeroth approximation always gives a 
lowered value of the stat ionary combustion speed. The second t e r m  in the two- te rm formula  is always pos-  
itive. In the majori ty  of cases,  by taking account of the second approximation, we obtain a substantial de- 
c rease  in the deviation of the speed, obtained by the approximate analytical method, f rom that obtained by 
numerical  integration. 

We remark  that various approximate methods of calculating the stat ionary propagation speed of an 
exothermic react ion front in a condensed medium were proposed in a ser ies  of papers  (for example, [1, 4, 
10, 11]). 

The method of matched asymptotic expansions, favored in many problems of mechanics,  makes it pos-  
sible, with the help of a standard procedure ,  to obtain an approximate analytical solution of the problem 
which guarantees good agreement  with the exact solution. By analogy with other problems of mechanics,  
for  example, with the problem of laminar  flow around a sphere [6], it may be assumed that the resul ts  ob- 
tained will be sufficiently close to the exact solution providing the values of the pa rame te r  of the expansion 
are  not too large.  
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